Facebook开发反人脸识别技术,实时也同样可用
记者 徐诗琪
编辑
面部识别技术已经越来越普遍地被用在我们的生活中。
每天,我们刷脸解锁手机,翻看相册里已根据人脸分类好的照片,甚至在上传图片到社交网络上时也不用自己填写人名,因为AI已经识别出你图片中人物的名字了。
但如果有一天,AI也能欺骗AI,以假乱真呢?
外媒VentureBeat报道称,近日,Facebook的人工智能实验室Facebook AI Research(FAIR)开发出一种“去识别”系统,该系统可以欺骗面部识别系统,例如,让面部识别系统将你识别为一位女明星。
尽管,2015年Facebook才被起诉违反了《伊利诺伊州生物识别信息隐私法案》。该法案要求,公司在收集和存储包括面部扫描在内的生物识别数据时,需要制定公共政策。而Facebook在其“标签建议”功能中使用了生物识别技术,却并没有制定相关政策。
但FAIR此次开发的“去识别”技术却是反人脸识别的。该技术通过机器学习,能够实时地改变视频中人脸的关键面部特征。它可以用在视频,甚至是实时视频中。
事实上这种“去识别”技术过去已经存在,许多公司已经拥有了对静态图像“去识别”的技术,如初创公司D-ID。该公司声称,其技术能改变一张人脸图片中的生物信息,使图片无法被人脸识别算法识别,但两张图片看上去仍是一样的。
还有一种被称为对抗图案(Adversarial Example) 的图形,它利用电脑视觉软件在训练识别特定特征时的漏洞,让识别系统产生误判。例如,有一副印有对抗图案的墨镜,能够使面部识别系统误认为你是女演员Milla Jovovich。
过去的技术通常应用于从监控摄像头等渠道获得的照片、静止影像,或是已事先计划好利用对抗图像欺骗人脸识别系统。现在,FAIR的研究针对实时影像和视频脚本,FAIR称这项技术成果是行业首例,且它足以抵抗精密的面部识别系统。
“面部识别可能会导致隐私的丢失,并且可能有人使用面部替换的技术来制作误导性视频。”一篇解释该技术的论文称,“最近,世界上关于人脸识别技术的发展和滥用,激起了人们了解反人脸识别技术的需求。我们的研究成果,是唯一适用于包括实时视频在内的所有视频文件的技术,并且呈现的效果远远超过理论值。”
据VentureBeat报道,Facebook并不打算在任何商业产品中使用这个反人脸识别技术,但这项研究可能会对未来的个人隐私保护工具产生影响。并且,就像该研究在“误导性视频”中所强调的那样,它能够防止个人肖像被用于制造伪造视频。
目前,Deepface等伪造视频的问题严重,用于制作Deepface的工具也日益精密。AI行业正在努力攻克这些问题。Facebook此次的研究成果,便提供了一种可行的方法。
同时,立法机关与科技公司也正在尝试着推出类似的可检测视频是否造假的工具,并着力于推出限制伪造视频、影像等传播的相关监管政策。